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Dynamical properties and plasmon dispersion of a weakly degenerate correlated
one-component plasma
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Classical Molecular Dynamics simulations for a one-component plasma are presented. Quantum effects are
included in the form of the Kelbg potential. Results for the dynamical structure factor are compared with the
Vlasov and random phase approximation theories. The influence of the coupling parameterG, degeneracy
parameterrL3, and the form of the pair interaction on the optical plasmon dispersion is investigated. An
improved analytical approximation for the dispersion of Langmuir waves is presented.
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I. INTRODUCTION

The model of a classical one-component plasma~OCP!
has—due to its simplicity—been widely investigated bo
theoretically and with various numerical and simulati
methods, see e.g.,@1–3# and @4,5#, respectively. Since the
pioneering numerical work of Brush, Sahlin, and Teller@6#,
the thermodynamic and dynamic characteristics of the c
sical OCP have been studied in detail. In particular, the
pendence of the properties on the coupling parameteG

54pe2/( r̄ kBT), where r̄ 5(3/4pr)1/3 is the mean interpar
ticle distance andr the density, have been investigated up
very large values ofG @7,8#. Among the most important ther
modynamic results is the prediction of crystallization at v
ues ofG of the order of 172–180@9–13#. Furthermore, in-
vestigations of the dynamic properties of strongly correla
classical plasmas have indicated that the wave number
pendent plasmon dispersion changes from monoto
growth, common for weakly coupled plasmas, to a decre
ing dispersion aroundG'3 @1#.

On the other hand, there is growing interest in the d
namic properties of densequantumplasmas, particularly in
astrophysics, laser plasmas, and condensed matter. Whil
case of strong degeneracy~strong quantum limit! and weak
coupling at very high densities is well described by the r
dom phase approximation~RPA, see e.g.,@14–18#!, the
properties atintermediate coupling and degeneracyremain
poorly explored. Especially, one is interested in the dyna
plasma behavior in cases where the average kinetic ener
of the same order as the mean potential energy, i.e.,G;1,
where collisionless theories such as the RPA fail, e
@15,16,19#. For these situations, quantum molecular dyna
ics ~QMD! simulations@20# are the appropriate numerica
approach which, however, is yet lacking the required e
ciency. For weakly degenerate plasmas, withrL3<1, where
L is the DeBroglie wave length~see below!, it is expected
that one can perform much simpler classical MD simulatio
using effective quantum pair potentials, e.g.,@3,21–23#.
These potentials can be derived from the two-particle Sl
sum using Morita’s method. The Kelbg potential has recen
been successfully used for path integral Monte Carlo sim
lations @24,25#. There, it was found to give excellent resu
1063-651X/2001/64~1!/016409~8!/$20.00 64 0164
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up to moderate degeneracy,rL3&5, which lets us expec
reliable results also for MD simulations, at least forrL3

&1. It is the aim of this paper to explore this MD approa
with the Kelbg potential in detail, especially for the analys
of the optical~Langmuir! plasmon dispersion.

It is natural to start this analysis with OCP simulatio
because they have the advantage of the absence of a col
of oppositely charged particles at small distances. On
other hand, the existence of a homogeneous backgroun
oppositely charged particles leads to some additional tec
cal difficulties compared to two-component systems, due
restricted carrier rearrangement causing less effective scr
ing of the Coulomb interaction. One major problem of M
simulations of the dynamical properties is that the behav
at small wave numbers is difficult to investigate. The reas
is that large box sizes are required which, for the analysis
high density plasmas, translates into large particle numb
The current increase of available computer power gives
the possibility to investigate size-dependent properties
the density-density correlations^rkW(0)r2kW(t)& for smallerk
vectors than before. In this paper, we are able to pres
accurate results for the dynamical properties of the OC
such as the dynamical structure factor and the wave ve
dispersion of Langmuir oscillations. Our simulations for i
termediate values of the coupling parameter,G51 . . . 4,
show an interesting dispersion: the frequency increases u
a maximum and, for large wave numbers, decreases ag
Further, we investigate the role of quantum effects by co
paring simulations with the Coulomb potential and an effe
tive quantum pair potential~Kelbg potential@21#! for the
region of small and intermediate coupling. We found th
quantum diffraction effects have noticable influence on
behavior of the optical dispersion curves. Increase of
degeneracy leads to a softening of the dispersionv(k), es-
pecially at intermediate wave vectors.

II. DYNAMICAL PROPERTIES OF THE OCP

A. Statistical approach

A central quantity to determine the dynamic properties
charged many-particle systems is the frequency-depen
dielectric functione(kW ,v) which, for the OCP, is given by
©2001 The American Physical Society09-1
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e~kW ,v!512UC~kW !P~kW ,v!. ~1!

HereUC(kW ) is the spatial Fourier transform of the Coulom
potential,UC(k)54pe2/k2, andP(kW ,v) is the longitudinal
polarization function. Thus, many-body effects enter the
electric function viaP. There exist many approximations fo
the latter function—the simplest are mean-field theories
neglect short-range correlation effects, i.e., collisions
tween the particles. For the classical OCP, the mean-fi
result is the Vlasov polarization:

PVlasov~kW ,v!52
1

mE d3v

~2p!3

kW

v2kWvW 1 id

]F~vW !

]vW
. ~2!

Here d→10, indicating the retarded~causal! character of
the polarization and the dielectric function. Further,F is the
distribution function. The Vlasov polarization applies only
classical plasmas, where the wave character of the part
can be neglected. Quantum effects are important if the in
particle distance or the Debye radius become comparab
the DeBroglie wavelengthL5h/A2pmkBT. Therefore,
quantum diffraction effects should show up in the dielect
properties at large wave numbers. The quantum genera
tion of the Vlasov polarization is the RPA polarization fun
tion, given by

PRPA~kW ,v!52E d3p

~2p\!3

f ~pW !2 f ~pW 2\kW !

\v1
p2

2m
2

~pW 1\kW !2

2m
1 id

.

~3!

In this paper we consider only plasmas in equilibrium, soF
andf are the Maxwell and Fermi function, respectively. O
readily confirms that, in the limit of long wavelengths,kW
→0, indeed the RPA result~3! goes over to the Vlasov po
larization function~2!. An important quantity which follows
from the dielectric function~1! via the fluctuation-dissipation
theorem is the dynamical structure factorS(kW ,v)

S~kW ,v!52
kBT

pUC~k!v
Im

1

e~kW ,v!
, ~4!

which shows the frequency spectrum of density fluctuati
for a given value ofkW .

As mentioned above, the mean-field expressions~2! and
~3! neglect short-range correlations and are, therefore, v
only for weakly coupled plasmas,G!1. There exist many
theoretical concepts to go beyond the RPA that are base
quantum kinetic theory, density functional theory, and ot
approaches. This is beyond the scope of this paper, see
Refs. @15,16,19# and references therein. Here, we consid
the alternative approach to the OCP at finite coupling tha
based on molecular dynamics simulations.
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B. Molecular dynamics approach to the dynamical properties

The dielectric and dynamical properties of an interact
many-particle system are easily accessible from the den
density correlation function that is defined as

A~kW ,t !5
1

N
^rkW~ t !r2kW~0!&, ~5!

whereN is the number of particles.rkW(t) is the Fourier com-
ponent of the density,

rkW~ t !5(
i 51

N

eikW r i
W (t), ~6!

which is computed from the trajectoriesrW i(t) of all particles.
The dynamical structure factor is just the Fourier transfo
of the density-density correlation function~5!,

S~kW ,v!5
1

2pE2`

1`

dt eivtA~kW ,t !. ~7!

Equation~7! can be directly compared to formula~4! and,
thus, allows for a comparison of the simulation results w
the statistical theories. Furthermore, Eq.~7! allows to inves-
tigate the influence of quantum effects on the dynami
properties and plasmon dispersion of the OCP. Variation
the interaction potential~see below! directly affect the par-
ticle trajectories and, via Eqs.~5!–~7!, the dynamical struc-
ture factor.

III. DETAILS OF THE MD SIMULATIONS

The simulations have been performed in a cube of len
L containingN interacting electrons on a uniform positiv
background. For this system, we solved Newton’s equati
of motion containing all pair interactions that are deriv
from a total potentialU(r ), see below. As an algorithm o
motion we used a second-order scheme in form of the Sw
algorithm @26#. Since our simulations are performed in th
microcanonical ensemble, the mean kinetic energy m
change. Therefore, to maintain the chosen value of temp
ture andG, we applied scaling~renormalization! of all ve-
locities at every second step.

A central goal of our simulations was to study the infl
ence of quantum effects. We, therefore, performed sev
simulations that used either a Coulomb potential or an eff
tive quantum pair potential~see below!. To permit flexibility
in the use of the potential,U was divided into a short-rang
and a long-range part,U5Usr1U lr, where quantum effects
influence onlyUsr, whereas the behavior at large distanc
U lr, is dominated by the long-range Coulomb interaction. L
us first describe the treatment of the long-range term.

A. Long-range interaction

The long-range interaction was computed in standard w
using periodic boundary conditions and the Ewald summ
9-2
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tion procedure@28,29#. As a result, the long-range potenti
is given by the Coulomb interaction in the main box and
image cells:

U lr~rW !54pe2(
iÞ j

N

VEwald~rW i j !, ~8!

VEwald~rW !5 (
nW 50

nx ,ny ,nz<1
erfc@Apu~rW1nW L !/Lu#

urW1nW Lu

1 (
nW Þ0

nx ,ny ,nz<5,n2<27
exp~2pn2!cos~2pnW rW/L !

pn2L

2
1

L
, ~9!

where erfc is the complementary error function,L is the side
length of the simulation cell, andnW is a vector of integer
numbers that labels the periodic images of the simula
box. In this expression, the first term corresponds to a po
tial of particles with Gaussian broadened charge distribu
around the electrons with a width ofAp, the second one
corresponds to the compensating Gaussian distributions,
the last one accounts for the influence of the homogene
background. It turns out that the second term in Eq.~8! can
be reduced to two loops~one over the particles and one ov
the vectorsnW in the reciprocal space! and is not very time
consuming. The more complicated part is the first term t
contains three loops. In case of a two-component plasm
proper choice of the width of the Gaussian distribution a
use of periodic boundary conditions greatly simplifies t
term due to cancellations. In contrast, for an OCP, the ba
ground cancels the interactions only partially, ‘‘statically
As a result, convergence of the sum is worse, and one n
to take into account all first neighboring image cells~total of
26! at every time step. The contribution of all neighborin
cells except for the main one (0,unW u<A3) was computed,
before the start of the simulations and stored in thr
dimensional tables for the potential and forces. During
simulations, we used 3D-bilinear interpolation at every s
to obtain the values of the potential and forces for interm
diate distances. We found that 100 grid points in every
rection are adequate, so the total size of the table was6

elements. The particle interactions inside the main (nW 50)
cell were evaluated directly at every time step without mi
mum image convention.

B. Short-range interaction: Quantum effects

Let us now discuss the short-range potential. As has b
shown by Kelbg and co-workers@21,27#, quantum effects
can be treated efficiently by an effective pair potential,
Kelbg potential:

UKelbg~r ,T!54pe2S 12exp~2r 2/l2!

r
1

Ap

l
erfc~r /l! D ,

~10!
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where l5L/A2p. As a consequence of quantum effec
this potential differs from the Coulomb potential at sm
distancesr<l and is finite atr 50. Further, it is temperature
dependent via the thermal DeBroglie wavelength. The Ke
potential can be regarded as the proper quantum pair po
tial following from the two-particle Slater sumS2 without
exchange effects:

ln S252
UKelbg

kT
1O~G2!. ~11!

It treats quantum diffraction effects exactly, up to first ord
in G. Frequently other quantum pair potentials have be
used, including the Deutsch potential@30#, which has the
same value atr 50 but differs from the Kelbg potential a
intermediate distances. As was mentioned by Hansen@31#,
symmetry effects do not have a big influence on the dyna
cal properties~although they give a major contribution to th
static properties, especially for the light mass componen!.
Using the Kelbg potential~10!, we can immediately separat
the short-range part of the interaction,

Usr~r ,T!54pe2S 2exp~2r 2/l2!

r
1

Ap

l
erfc~r /l! D ,

~12!

that has been calculated together with the first sum of Eq.~9!
using the interpolation table.

The Kelbg potential contains just the lowest order qua
tum corrections~lowest order ine2) and is, thus, accurate a
small coupling,G,1. Nevertheless, we expect that it co
rectly reproduces the influence of quantum effects also
intermediate coupling,G<5, that is also motivated by its
successful use in quantum Monte Carlo calculations@24,25#,
see above. Further improvements are straightforward, e
by including exchange effects or by evaluating the full tw
particle Slater sum. We note that the described numer
procedure applies to such improved quantum pair poten
as well, even if they are not given analytically.

C. Thermodynamic and dynamical quantities

Solving Newton’s equations with forces derived from t
total potentialUsr1U lr, we computed thermodynamic an
static quantities, such as total energy and pair distribut
function in usual manner. The results will be presented in
next section. Here we discuss some details on the comp
tion of the dynamical properties, as they require much m
effort and computation time in order to achieve sufficie
accuracy.

To obtain useful results for the dynamical structure fact
requires simulation results in a sufficiently broad range
wave numbers and frequencies. Natural units of the w
number and frequency are 1/r̄ and the plasma frequenc
vpl5A4pe2r/m, respectively, which will be used in the fol
lowing. The minimum wave numberkmin depends on the size
L of the simulation box and thus, for a given density
coupling parameter, on the number of particlesN. One
readily verifies thatkmin52p/L52p(r/N)1/3 or, using di-
9-3
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TABLE I. Parameters of the molecular dynamics simulations with the Kelbg potential. Numbe
parentheses refer to the runs with Coulomb potential.

G rL3 r (cm23) T ~K! vpl (fs)21
r D / r̄ N kminr̄ Run time (Tpl)

0.5 0.1 9.1231021 1.1263105 5.387 0.816 500~250! 0.491~0.619! 515~341!
0.5 0.5 2.2831023 3.2923105 26.940 400~250! 0.529~0.619! 429~429!
1.0 0.1 1.1431021 2.2283104 1.905 0.577 250 0.619 290~327!
1.0 0.5 2.8531022 8.233104 9.524 250 0.619 682~682!
1.0 1.0 1.1431023 1.313105 19.048 250 0.619 477
4.0 0.1 1.7831019 1.763103 0.238 0.289 250 0.619 570~227!
4.0 1.0 1.7831021 8.173103 2.381 250 0.619 716
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mensionless wave numbers,qmin5kminr̄ 5(6p2/N)1/3.
Clearly, to reducekmin requires an essential increase of t
number of particles in the simulation.

The simulation accuracy can be further increased by
ing advantage of the isotropy of the plasma in wave vec
space. Indeed, in equilibrium, the density-density correlat
function and dynamical structure factor should only depe
on the absolute value of the wave vector. On the other ha
the simulations yield slightly different results for differe
directions of the wave vector. Averaging over all results c
responding to the same absolute value ofkW allows to reduce
the statistical error. For example, the minimum wave num
kmin corresponds to directions ofkW along either thex, y, or z
axis, cf. Eq.~6!, so we can use the average of the three. T
next larger value isA2 kmin , corresponding to the diagona
in the x-y, x-z, and y-z planes. The third value,A3 kmin ,
corresponds to the space diagonal and is not degenerate;
sequently it carries the largest statistical error. This is
main reason for the fluctuations of the numerical results
the wave vector dispersion, see for example Fig. 5.

Finally, to resolve the collective plasma oscillations, t
duration of the simulations has to be much larger than
plasma period. Also, increased simulation times leads t
reduction of the noise. We found that times of the order
250 plasma periods are adequate.

IV. NUMERICAL RESULTS

We have performed a series of simulations for vary
values ofG andrL3, using the Coulomb and Kelbg poten
tial. Also, time step and particle number have been var
until a satisfactory compromise between accuracy and si
lation efficiency has been achieved. The parameters of
runs chosen for the figures below are summarized in Tab
We mention that kinetic energy conservation in all runs~if
velocity scaling was turned off! did not exceed 0.1%. Also
the results for the total energy~not shown!, in case of the
Coulomb potential, agree very well with data from the liter
ture.

We first consider the pair distribution functiong(r ) for
varying interaction potentials and parameter values. Figu
showsg(r ) for three values of the coupling parameter,G
50.5,1,4. As expected, the Coulomb pair distribution fun
tion is close to the Debye-Hu¨ckel limit for small coupling,
with increasingG, the deviations, especially aroundr 5 r̄ ,
01640
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grow systematically. The Kelbg pair distributions practica

coincide with the Coulomb functions forr .0.6r̄ but deviate
from the latter at small distances of the order of the therm
DeBroigle wavelengthL where quantum effects are impo

tant. Clearly, with increasing degeneracy, the ratioL/ r̄ in-
creases, and the deviations extend to larger distances
grow in magnitude. With increasingG, the deviations be-
come smaller since Coulomb effects dominate the beha
at small distances.

Let us now turn to the dynamical properties. In case of
OCP, charge and mass fluctuations are identical becaus
the rigid opposite charge background. In our simulations,
have calculated the density-density correlation function~5!
and, by numerical Fourier transformation, obtained the
namical structure factorS(q,v) for several~from 6 to 10,
depending on the simulation! wave numbers, the values o
which are determined by the size of the simulation box
~see above!. The value of the smallest wave number is giv
in Table I. The frequency dependence ofS(q,v) for several
wave vectors is presented in Figs. 2–4 for the Coulomb
Kelbg potentials. Also, the results of the mean-field mod
are shown. The peak of the structure factor is related to
optical plasmon~Langmuir mode! of the electrons, its posi-
tion shows the plasmon frequencyV(k), its width—the
damping of the mode. In the limitk→0, V(k)→vpl for all
models. For increasing the wave numbers, the width of
peak grows steadily, and it merges with the continuum
single-particle excitations, e.g.,@16,18#, therefore, no results
for larger wave numbers are shown.

Consider now the results for the plasmon dispersion m
in detail, cf. Fig. 5. First, we discuss the mean-field resu
~4! that are calculated using the Vlasov and RPA polari
tions, Eqs.~2! and ~3!, respectively. The Vlasov result wa
computed using the formulas given in the review of Kug
@32#, and for the RPA, a code was developed that accura
evaluates the pole integration in Eq.~3!, @33#. Both approxi-
mations show the same general trend for small and inter
diate wave numbers: with increasing wave number, the p
mon frequency and the damping increase. At largeq, the
dispersion exhibits a maximum and decreases again. In
situations, the RPA yields a slightly smaller frequency th
the Vlasov result, whereas the damping values are very c
to each other.

Let us now turn to the simulation results. The Coulom
and Kelbg simulations have been performed for exactly
9-4
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same parameters, except forN and run time~cf. Table I!.
~Notice that, in contrast to the Kelbg case, the Coulo
simulations depend only onG that can be achieved by var
ous combinations of density and temperature.! Comparison
of the two simulations shows, cf. Fig. 2, that the results
the structure factors are very similar in case of smallG. Peak
positions and widths as well as the low and high freque
tails are very close to each other. The reason is obvio
since the potentials~and pair distributions, cf. Fig. 1! differ
only at a small interparticle distances of the order ofL,
differences in the structure factor would show up only ak

FIG. 1. Pair distribution functions forG50.5 ~upper figure!, G
5 1.0 ~middle figure!, 4.0~lower figure!, andrL350.1, 0.5, 1.0 for
systems with Coulomb and Kelbg potential. Further, the Deb
Hückel limit is shown~solid line!. Line styles are the same in a
three figures The inset in the middle figure shows the influenc
the degeneracy at small distances. The results forG54.0, rL3

50.1 with Kelbg potential are not distinguishable from the Co
lomb result and are not plotted.
01640
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.2p/L, which is about an order of magnitude larger than t
wave numbers shown in Fig. 2. There, the plasmon peak
already a width of the order of the frequency and no lon
describes a well-defined collective excitation.

It is now interesting to compare the simulation results
the theoretical approximations. The first observation is t
the simulation peaks are significantly broader, cf. Fig. 2. T
is obvious since the simulations fully include interpartic
correlations missing in the mean-field results. Consequen
the plasmon damping contains collisional damping in ad
tion to the Landau damping~which is the only damping
mechanism in the mean-field models!. Correspondingly, the
plasmon peaks in the simulations are shifted to smaller
quencies. This effect grows with increasing wave numbe
well as with increasing coupling~see also Fig. 5!. We note
that, in our simulations, this shift is observed for all wa
numbers, which is in contrast to the result of Hansen~see
Fig. 9 of Ref.@31# for q50.6187!. In other words, the plas
mon dispersion curves from the MD simulations are low
than the mean-field result for all wave vectorskW , which is
seen
-

of

-

FIG. 2. Dynamical structure factor for an OCP atG51 and
rL350.1 from MD simulations with Coulomb and Kelbg poten
tials. In addition, Vlasov and RPA results are shown. The wa

numbers are shown in the figures in units ofr̄ , i.e., q5kr̄.

FIG. 3. Same as Fig. 2, but forG50.5 andrL350.1. The
values of the wave numbers differ from Fig. 1 due to the differe
particle numbers, cf. Table I.
9-5
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more clearly in Fig. 5. As expected the MD curves for t
structure factor are much closer to the RPA than to the V
sov result.

In Fig. 5 we plot the optical plasmon dispersion curves
three values of the coupling parameter for the Vlasov a
RPA dispersions together with the simulation results. W
further show the well-known analytical approximation to t
Langmuir dispersion,

v~q!5vplS 11
q2

G D 1/2

. ~13!

Clearly, this predicts a monotonically increasing dispersi
However, this approximation is valid only fork,1/r D and
for G,1. Let us now consider the simulation results that
not have this limitation. In Fig. 5 we show the MD results f
a Coulomb potential and for the Kelbg potential for thr
values of the degeneracy parameter,rL350.1,0.5,1.0. One
clearly sees that, for these parameters, the dispersion is
tive, dv(q)/dq.0, up to wave numbers of the order of on
over the mean interparticle distance. For largerq, the disper-
sion changes its sign. This general trend is observed for
Coulomb and the Kelbg potential. On the other hand, w
increasing quantum effects,rL3, the deviations between th
two potentials are growing, that becomes more pronoun
asG increases, cf. the curves forG51 andG54: the disper-
sion in case of the Kelbg potential shows a softer incre
with increasing wave number and reaches a lower maxim
approximately at the same wave number as in the Coulo
case. We mention that this sign change of the dispersion
not been reported by Hansen@1#. Comparing the simulations
with the mean-field results, we again see that the MD disp
sions proceed lower than the mean-field results, and this
fect grows with increasingG and increasing wave numbe
Once more, we confirm that the RPA dispersion is mu
closer to the MD result than the Vlasov dispersion, at le
for G<0.5. ~As mentioned above, the simulation results f
the dispersion show certain statistical fluctuations due to
varying accuracy of the results for the different wave nu
bers.!

Let us now consider the plasmon damping more in det
Figure 6, shows the damping~full width at half maximum of
the plasmon peak of the structure factor! as a function of

FIG. 4. Same as Fig. 3, but forrL3 5 0.5.
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wave number. It is interesting to compare with the famil
analytical expression from the Vlasov theory, e.g.@34#,

d~k!5Ap

8

A113k2

k3
e21/2k223/2, ~14!

wherek[krD is the dimensionless wave number in units
the inverse the Debye radiusr D given in Table I. Formula
~14! is derived under the condition that the damping is mu
smaller than the frequency@d(q)!v(q)#, and is limited to
small wave numbersk!1. As expected, the damping give
by formula ~14! that is only Landau damping, is muc
smaller than the damping found in the simulations, as
latter contain the full collisional damping also. Obviousl
for small coupling and smallq, Eq. ~14! shows the correct
trend. However, deviations increase rapidly with growi
coupling parameter. Furthermore, the simulations that are
limited to small wave numbers, show a qualitatively differe

FIG. 5. Optical plasmon dispersion for various coupling a
degeneracy parameters from MD simulations with Coulomb a
quantum potentials. Also shown are results of the Vlasov and R
approximations, and of the analytical approximation of Eq.~13!.
For G54.0 andrL350.1 ~upper graph! the MD simulations with
Kelbg potential and the RPA curve are not shown since they alm
coincide with the Coulomb simulation and the Vlasov curve,
spectively.
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behavior at largeq: a monotonic increase of the dampin
Interesingly, with increasingG the damping is reduced, c
Figs. 6~a! and 6~b!.

Finally, we try to extend the analytical result for the pla
mon dispersion, Eq.~13!, to largerG and to include quantum
effects. To this end, we used the MD data with the Ke
potential to construct an improved fit of the formv(q)
5vpl(11aq21bq4)1/2. The result is shown in Fig. 7 fo
G51 andG54. Due to the large fluctuations in the dispe
sion data and the increasing damping for large wave n
bers, we used a weighted fit where the smallestq values had
the largest weight and the statistical errors of the individ

TABLE II. Fit parameters of the Langmuir dispersion curv
shown on Fig. 7. The fit equation was taken in the form
v(q)/vpl5(11aq21bq4)1/2. Parameters of the fit forG 5 1 and
rL3 5 0.1 are less reliable, because of the absence of data fo
wave vectors, cf. Table I.

G rL3 a b

1.0 0.1 1.01360.031 20.26060.023
1.0 0.5 1.07460.041 20.28860.013
1.0 1.0 0.97560.055 20.25960.018
4.0 0.1 0.16960.015 20.03460.006
4.0 1.0 0.12160.007 20.02560.003

FIG. 6. Damping of Langmuir waves from MD simulations wi
the Kelbg potential for various values ofG andrL3. Solid lines are
the analytical small damping limit of the Vlasov theory, Eq.~14!.
01640
-

-

l

points have been taken into account. Table II contains
resulting fit parameters. According to this data both para
etersa andb depend onG andrL3. The parametera is close
to 1/G in agreement with Eq.~13!, but with increasingG,
deviations are growing, compare Table II. We see no syst
atic influence of quantum effects on the parametera for G
51. Noticeable effects show up forG54, where increased
degeneracy leads to a reduction of the coefficienta. The
second fit parameter allows to qualitatively reproduce
change of the sign of the dispersion. The overall agreem
is satisfactory for wave numbers up to the inverse mean
terparticle distance up to which the plasmons are comp
tively weakly damped.

f

ig

FIG. 7. Dispersion of Langmuir oscillations from MD simula
tions with the Kelbg potential for various values of the coupling a
degeneracy. Symbols are MD results, lines the best fits to the

wave number part (q,1/r̄ ), the fit formula, and parameters ar
given in Table II.
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V. DISCUSSION

We have presented extensive classical molecular dyn
ics simulations of the dielectric properties of a on
component plasma at intermediate coupling and degener
G<4 andrL3<1. While classical MD simulations can b
extended to arbitrary large values ofG, they have limited
applicablility to quantum plasmas. We used, as an effec
quantum pair potential, the Kelbg potential that rigorou
describes quantum diffraction effects in an equilibriu
plasma for smallG. On the other hand, the Kelbg potential
only the first term of aG expansion for an effective quantum
pair potential, and forG.1 the account of higher order co
rections to the quantum diffraction effects may become
portant. Work on this subject is in progress. Nevertheless
found that the plasmon dispersion is rather weakly infl
enced by the details of the pair potential, so we expect
the Kelbg potential correctly reproduces the dynamic pr
ta

s.

A

s

01640
-
-
cy,

e

-
e
-
at
-

erties of a weakly degenerate plasma also for intermed
values ofG. The main advantage of using the Kelbg potent
is that it correctly treats close collisions, i.e. the two-partic
scattering at interparticle distances smaller than the DeB
glie wavelength. This is of even higher importance in t
case of two-component plasmas where the Kelbg poten
allows to avoid the collapse of oppositely charged particl
Therefore, the present investigation should be important
future work on two-component plasmas.
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